On the possibility of superhydrophobic behavior for hydrophilic materials.

نویسندگان

  • X S Cui
  • W Li
چکیده

It has been recognized well that it is necessary to achieve superhydrophobic surfaces on intrinsically hydrophobic materials. However, recently experiments have demonstrated that it is possible to fabricate superhydrophobic surfaces on intrinsically hydrophilic materials by creating adequate roughness. In this study, such a possibility for superhydrophobicity on a hydrophilic surface with an intrinsic contact angle (CA) of 80 degrees, with a comparison to a hydrophobic surface with an intrinsic CA of 120 degrees, is thermodynamically analyzed using a pillared microtexture. Based on the calculations of free energy (FE) and free energy barrier (FEB), it is found that for such hydrophilic materials, generally, the FE for noncomposite or Wenzel's state is lower than that composite or Cassie's state for various geometrical wetting systems. Furthermore, even if pillar height or roughness is adequately large, it is hard to realize superhydrophobic behavior because of the surface wicking resulted from its special FE state. In addition, due to the negative FEB of the noncomposite state, there is no transition between noncomposite and composite states no matter how surface geometry varies. The above results also indicates that once noncomposite state is formed, it can hardly be become composite state, or in other words, even if superhydrophobic behavior is possible, it could be temporary and unstable. The present theoretical investigation therefore keeps a reservation on the practicability of superhydrophobic surfaces built on hydrophilic materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures†

An important feature of biological systems is their response to external stimuli with subsequent changes in properties and function. The ability to ‘‘engineer’’ adaptiveness into next-generation materials is becoming a key requirement and challenge in chemistry, materials science and engineering. Recently we have described new hybrid nano/microstructures capable of dynamic actuation by a hydrog...

متن کامل

Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.

Tunable hydrophobic/hydrophilic flexible Teflon nanocone array surfaces were fabricated over large areas (cm(2)) by a simple two-step method involving the oxygen plasma etching of a colloidal monolayer of polystyrene beads on a Teflon film. The wettability of the nanocone array surfaces was controlled by the nanocone array dimensions and various additional surface modifications. The resultant T...

متن کامل

Preparation and electrowetting transitions on superhydrophobic/ hydrophilic bi-layer structures

A simple method of preparing porous superhydrophobic materials using glass fiber materials, where hydrophobicity is provided by a variety of coatings such as self-assembled alkyl-silane monolayers and fluoropolymers such as Teflon is presented. Fibrous structures of the filter material provide for the modulation of ‘‘surface roughness’’ on the microand nano-scale, required for achieving a super...

متن کامل

Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dr...

متن کامل

Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

Certain natural organisms use micro-patterned surface chemistry, or icenucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 347 1  شماره 

صفحات  -

تاریخ انتشار 2010